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Speech emotion recognition, a highly promising and exciting problem in the field of Human Computer
Interaction, has been studied and analyzed over several decades. It concerns the task of recognizing a
speaker’s emotions from their speech recordings. Recognizing emotions from speech can go a long way
in determining a person’s physical and psychological state of well-being. In this work we performed
emotion classification on three corpora — the Berlin EmoDB, the Indian Institute of Technology
Kharagpur Simulated Emotion Hindi Speech Corpus (IITKGP-SEHSC), and the Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS). A combination of spectral features was extracted
from them which was further processed and reduced to the required feature set. Ensemble learning
has been proven to give superior performance compared to single estimators. We propose a bagged
ensemble comprising of support vector machines with a Gaussian kernel as a viable algorithm for the
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problem at hand. We report the results obtained on the three datasets mentioned above.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Speech is one of the primary means of communication among
human beings. One can convey their emotions, state of mind etc.
through speech, and speech related applications have sprung up
in numerous areas such as personal digital assistants, text-to-
speech models, sensors and others. Thus, the natural next step is
to teach a computer to interact just like humans, in that it could
learn to understand the emotions underlying spoken language
and respond appropriately. This is why it becomes important to
train a machine to recognize the emotions of people from their
speech.

The task of recognizing emotions in speech (both speaker-
dependent and independent) has been a subject of considerable
interest for quite some time. This is a problem that is highly
challenging and multi-dimensional, because various emotions can
be conveyed differently in different forms of speech. Also, the task
of determining what all features to extract from speech to analyze
its inherent emotions is a different problem in itself.

The existing approaches to this problem mostly make use of
support vector machines (SVMs), hidden Markov models (HMMs)
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or neural networks. While SVMs provide reasonably good esti-
mates with lesser effort, neural networks and hidden Markov
models are difficult to build and train, and require high com-
putational power and time. There thus needs to be a method
to enhance the performance of support vector machines on the
problem. This is where ensemble learning comes into the picture.

Ensemble learning [1] comprises of training multiple estima-
tors, and aggregating their outcomes using particular rules. Some
of the prominent ways of building ensembles include bagging
(bootstrap aggregating) and boosting. Both these methods usually
comprise of ensembling similar learners. Bagging, however, is a
parallel mechanism, while boosting is an iterative procedure.

Our approach comprises of examining the performance of
these ensemble methods on the problem of emotion recognition
from speech. Particularly, we wish to assess the performance of
ensembles of support vector machines. We compare the bagged
and boosted ensembles prepared from the same, and observe
that the bagging estimator demonstrates a better performance as
compared to boosting.

Section 2 summarizes the previous research done in speech
emotion recognition and ensemble learning methods. Section 3
gives a general overview of the system, including the model
description and the process of feature extraction. Section 4 gives a
thorough description of the datasets used, the experimental setup
and procedure. Section 5 subsequently reports observations and
compares results with some state-of-the-art systems, and Sec-
tion 6 then proceeds to derive conclusions from the observations.
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2. Prior research

This section is divided into two parts: one covering research
on emotion recognition from speech, and the other covering
advances in ensemble learning methods.

2.1. Emotion recognition from speech

To correctly recognize the emotion from speech data, it is very
important to extract the features which accurately represent the
emotional aspect of speech signals. One of the biggest challenges
in this field is to extract efficient features for the best classifica-
tion of emotions. Some notable works in this area include analysis
and synthesis of emotional speech [2,3].

Mel Frequency Cepstral Coefficients (MFCCs) have been stud-
ied and applied frequently for tasks like speech recognition and
speaker identification [4]. Existing studies have found that MFCCs
are a far preferable way of analyzing emotions compared to
other commonly used speech features (e.g., loudness, formants,
linear predictive coefficients etc.) [5]. Bou-Ghazale and Hansen [6]
demonstrated that the features based on cepstral analysis, out-
perform the linear features of Linear Predictive Coding (LPC)
in detecting emotion in speech. Liu [7] showed that a feature
set comprising of Gammatone Frequency Cepstral Coefficients
(GFCCs) gave an average increase of 3.6% in accuracy over MFCCs
for emotion detection. In addition, voice quality features such
as jitter and shimmer, glottal parameter, etc. are also related to
emotion in speech [8,9]. Li et al. [ 10] extracted jitter and shimmer
as voice quality parameters mixed with MFCC features to identify
emotions on SUSAS database.

Recently, the combination of different kinds of features has
been widely used for emotion recognition in speech. Pan et al. [11]
showed that the combination of MFCCs, Mel-energy spectrum
dynamic coefficients (MEDCs) and energy with a SVM classifier
on a self-constructed Chinese emotional database and the EmoDB.
The difference between MEDCs and MFCCs is that MEDCs are cal-
culated as the logarithmic average of energies after the filter bank,
while MFCCs are calculated as the logarithmic after the filter
bank. Chen et al. [12] used a three-level speech emotion recogni-
tion model to solve the speaker independent emotion recognition
problem and extracted the energy, zero crossing rate (ZCR), pitch,
the first to third formants, spectrum centroid, spectrum cut-off
frequency, correlation density, fractal dimension, and five Mel-
frequency bands energy. The three levels classify the six emotions
pairwise, with each level providing finer classification than the
last.

Schuller et al. [13] proposed the usage of a multiple-stage
classifier with a support vector machine over 7 emotional classes,
with the aim of employing both acoustic and linguistic fea-
tures for emotion classification. A deep belief network was used
for spotting emotional key-phrases. Various classifiers (Gaussian
Mixture Models (GMMs), SVMs, Neural Networks, Nearest Neigh-
bors) were used for training on the acoustic features, and then
combined with the belief network using a neural network and
their performances evaluated.

Liu et al. [14] proposed a feature selection method based on
correlation analysis and Fisher criterion and used extreme learn-
ing machine (ELM) decision trees as the classification method on
the Chinese speech database from the Institute of Automation of
Chinese Academy of Sciences (CASIA). The idea behind using the
Fisher correlation coefficient was to remove redundant features,
which was a possibility considering that features are extracted
from the same audio sources for emotion recognition.

Fahad et al. [15] used a DNN-HMM speaker adaptive model on
IEMOCAP and IITKGP-SEHSC databases. Features based on glottal
closure instants (also called epochs) were used in combination

with MFCCs. The epoch features that were used were instanta-
neous pitch, strength of excitation (SoE) and instantaneous phase.
The idea behind the extraction and usage of these features was
that speech features tend to change very rapidly due to the vi-
brations of the vocal chords of the speaker; such changes are not
captured in general prosodic features, which assume the speech
signal to be static. Hence, excitation source features in the form
of GCIs were extracted from the signals and studied (see Table 1).

2.2. Ensemble learning

Ensemble learning constitutes the process of combining the
learning procedures of multiple models in other to give a final,
(usually) stronger learner. Such methods have been used in a
wide range of application areas — including credit scoring [16],
medical diagnosis [17] and accent prediction [18]. Many kinds
of ensemble techniques have been proposed [19], of which the
primary ones are bagging [20] and boosting [21].

Hypotheses generated using ensembles made of diverse base
estimators have been demonstrated to be far superior to sin-
gle hypotheses [22]. Quinlan [23] conducted trials over a di-
verse dataset collection and demonstrated bagging and boosting
ensembles as performing noticeably well.

Bagging comprises of training several estimators on subsets
of the dataset chosen randomly. If drawn with replacement, the
samples are known as bootstrap samples. This approach has been
used in several areas of study, for instance traffic forecasting [24]
and credit card fraud detection [25].

Ensemble methods have been applied to audio data as well.
Schuller et al. [26] presented an analysis of ensemble machine
learning on speaker-independent speech emotion recognition,
and reported improved accuracy on data scraped from movie
content. Morrison et al. [27] ensembled various classifiers using
an unweighted vote rule, and used it on emotion recognition in
call-center speech.

Particularly, bagged ensembles of support vector machines
have been analyzed in a few works [28]. Hu et al. [29] used
such an ensemble for the problem of fault detection in rotating
machinery. However, such works are few and far in between, and
we hope to further analyze this model and apply it for emotion
recognition from speech.

3. System overview

This section will cover the system overview — that is, the
nature and quantity of features extracted and the structure and
design of the model used.

3.1. Feature extraction

The primary aspect of analyzing emotions inherent in speech
data is the set of features extracted from the same. The right set
of features extracted could go a long way in developing sound
speech emotion analysis. Many works have been proposed in
this direction [2,11], with Mel-Frequency Cepstral Coefficients
(MFCCs) emerging as some of the most popular [4].

In order to analyze the speech data using machine learning
techniques, we extracted spectral features from the datasets and
prepared a feature vector from each. The following features were
extracted:

1. Mel-Frequency Cepstral Coefficients (MFCCs) [30]: These
coefficients are a better way of representing sound as heard
by the human ear. Since the cochlea in human ears per-
ceives frequency of sounds by vibrating according to the
present frequencies (information on which then travels to
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Table 1
Existing research in SER.
Authors Features Model Accuracy
Pan et al. MFCC, MEDCs SVM 91.3% on Chinese corpus
and energy and 95.1% on EmoDB
Chen et al. Prosodic + 3-level system 86.5%, 68.5% and 50.2%
spectral based on SVMs on each level resp.
features
Schuller et al. Acoustic + Linear classifiers 81.19%
linguistic with a belief
features network
Liu et al. Prosodic + ELM decision trees 89.6%
spectral
features
Fahad et al. MFCCs and DNN-HMM 64.2%
epoch speaker adaptive
features model

the brain by nerve firings), it makes more sense to quan-
tify perceived frequency according to the actual measured
frequencies — which is where the Mel scale is used. The
formula for converting from frequency to the Mel scale is:

M(f) = 1125In(1 + f/700) (1)

2. Delta and Delta-Delta MFCCs: These coefficients are also
known as differential and acceleration coefficients, respec-
tively, and characterize the trajectories of the MFCCs over
time.

3. Spectral Centroids: These coefficients are the spectral sub-
band centroids of each frame, and are usually 26 in number.

Each audio file (signal) was first divided into frames of length
25 ms each, with frame step 10 ms — these values being the usual
standard ones used in speech emotion recognition works [31].
Then for each frame:

e The Discrete Fourier Transform is calculated. A 512 point FFT
(number can be varied according to data) is calculated and
the first 257 points are kept.

e The periodogram-based power spectral estimate for each
frame is calculated by squaring the result of the absolute
value of the complex Fourier transform calculated previ-
ously.

e The Mel-space filterbank is calculated by applying 26 filters
to the periodogram-based power spectral estimate calcu-
lated previously. This gives us 26 numbers describing the
energy of each frame.

e The logarithm of each of the 26 numbers is calculated to
give us 26 log filterbank energies, and a Discrete Cosine
Transform is performed on these to give us 26 cepstral
coefficients, of which we keep the first 13 as the final
Mel-Frequency Cepstral Coefficients.

Datasets Pre-

Datasets Collection Processing

Testing, observations
and analysis

The delta and delta-delta coefficients are next calculated using
the following equation:

27:1 N(Ceyn — Ct—n)
2 ZII;J:'I n2
where d; is a delta coefficient from frame t computed in terms
of ¢ctyn to ¢—y. N is the number of samples, and ¢,y to ¢y
constitute the static coefficients. The delta-delta coefficients are
calculated as the delta of the delta coefficients using the same

formula.

The spectral sub-band centroids are calculated next, 26 for
each frame. Since the length of the audio files varies, the above
coefficients alone cannot give us a uniform feature vector —
because the number of frames vary due to the varying audio file
lengths. In order to get a proper feature vector from the above
features, we calculated seven values for each audio file based on
the values of each frame constituting the file: the mean, variance,
maximum value, minimum value, skewness, kurtosis and inter-
quartile range. These values were calculated for each audio file
over all the frames and for each coefficient, which gave us a
feature vector of size (13 + 13 4+ 13 + 26) x 7 = 455.

dt=

(2)

3.2. Model description

We use a bagging ensemble method as our model for the
data. Bagging, short for bootstrap aggregating, consists of training
samples (drawn at random, hence called bootstrap samples) fed
into the various base estimators of the ensemble, then combining
and deciding on the final predictions by using a majority voting
rule.

Our base estimator was a support vector machine with a
Gaussian kernel, penalty term 100 and kernel coefficient 0.1. We
combined 20 of these in a bagging ensemble, and prepared it

Feature selection and
data resampling

Feature analysis and
extraction

Model: Bagged

ensemble of 20

support vector
machines

Training: 10-fold
cross validation
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so samples were drawn from the training set as subsets of the
feature set as well as the training examples. This took care of
the correlation factor that could arise when similar estimators are
trained on samples drawn with replacement.

In our bagging ensemble, 20 sample sets were drawn from

the training set with replacement, and then trained on each base
estimator in a parallel manner. The results obtained are then
aggregated using averaging to give the final predictions.
We compared this with an AdaBoost [32] ensemble of support
vector machines. AdaBoost, developed by Freund and Schapire,
works by training estimators in series, unlike in bagging where
the estimators are trained separately in parallel. AdaBoost gives
a final, strong prediction by iteratively improving upon the errors
made in each step by the estimator. It is a forward stagewise
additive model with an exponential loss function; weights are
adjusted accordingly after each iteration so that misclassifications
are penalized and the classification ability improves.

4. Experimental setup
4.1. Datasets description

We present results on three emotional speech corpora, the
details of which are described below.

4.1.1. Berlin EmoDB

The Berlin EmoDB [33] is an emotional corpus in the German
language consisting of ten actors (5 male, 5 female) speaking ten
German utterances in various emotions. The corpus consists of 7
emotions: Happy, Sad, Angry, Boredom, Fear, Neutral, Disgust and
a total of 535 audio files in the .wav format with a sampling rate
of 16,000 Hz.

4.1.2. RAVDESS

The Ryerson Audio-Visual Database of Emotional Speech and
Song [34] is an emotional song and speech corpus in the English
language consisting of 24 actors (12 male, 12 female). Each ex-
pression is produced at two levels of emotional intensity (normal,
strong). This experiment uses the speech part of the corpus,
which consisted of 8 emotions: Happy, Sad, Angry, Calm, Fear,
Neutral, Disgust, Surprise and a total of 1440 audio files in the
.wav format with a sampling rate of 48,000 Hz.

4.1.3. ITKGP-SEHSC

The Indian Institute of Technology Kharagpur Simulated Emo-
tion Hindi Speech Corpus (IITKGP-SEHSC) [35] is an emotional
song and speech corpus in the Hindi language consisting of 10
speakers (5 male, 5 female) speaking 15 utterances in 10 sessions.
The corpus consisted of 8 emotions: Happy, Sad, Angry, Sarcastic,
Fear, Neutral, Disgust, Surprise and a total of 1200 audio files per
speaker in the .wav format. The sampling rate was 16,000 Hz.

4.2. Data pre-processing

The feature vector having been obtained, the data was first
scaled to the range (0, 1), and then split into training and test
data with a 90:10 proportion. Next, Boruta [36], a wrapper-based
all-relevant feature selection method was applied on the data in
order to reduce the size of the feature vector. Table 2 gives the
size of the feature vector for each dataset after feature selection
using Boruta.

Since the EmoDB and RAVDESS datasets were highly imbal-
anced, data resampling techniques were applied on them so
as to have better training and results. We used the imblearn
package [37] for the same.

Data resampling for unbalanced classes can be done in two
ways: over-sampling (increasing the number of samples in the

Table 2
No. of features for each database after feature selection.

Dataset Features after feature selection
EmoDB 147
RAVDESS 183
IITKGP-SEHSC 403
Table 3

Experimental Observations.

Dataset Training accuracy Holdout set accuracy
EmoDB 96.25% 92.45%
RAVDESS 79.85% 75.69%
IITKGP-SEHSC 85.72% 84.11%

smallest class to bring it to par with the other classes) and under-
sampling (decreasing the number of samples in the largest class
to bring it to par with the other classes). Combinations of both,
which would oversample the smaller class and undersample the
larger class are also used. We use the combination of SMOTE
over-sampling and Tomek Links under-sampling in our work.

4.3. Model training

The entire procedure was carried out using the scikit-learn
package for machine learning algorithms and resources [44].
Training and evaluation on the datasets was performed using 10-
fold cross validation, with accuracy chosen as the cross-validation
metric. The model was trained in the one versus rest fashion.
A similar procedure was followed for the AdaBoost ensemble as
well.

For bagging, 20 subsets of the data are sampled uniformly and
with replacement from the dataset. In our experiments, these
are drawn as subsets of both samples and features. One SVM is
trained on each subset, and the results from the 20 models are
then aggregated using averaging. In the case of AdaBoost, the base
estimators are trained sequentially on repeatedly modified ver-
sions of the dataset. The final estimation is given by the weighted
aggregate of the individual predictions. In each iteration, the
sample weights are adjusted and the learner is reapplied. The
weights are adjusted such that the misclassified samples gain
more weight compared to the correctly classified ones, so that
the focus on them is increased with each further iteration (see
Fig. 1).

5. Results and discussion

We first extracted 455 features from the datasets for emotion
recognition and then reduced their dimensionality using Boruta.
As per 4.3 the recognition rate remained approximately same,
while the number of features required is reduced. In case of
the EmoDB dataset the reduction is almost 68%, whereas the
recognition rate improved by 7% compared to results obtained by
using all the 455 features.

The proposed method was also evaluated using only MFCC
features, but their recognition rate was as low as roughly 66%
on RAVDESS database. It suggests that a feature set comprising
of MFCCs alone is not descriptive enough for speech emotion
recognition, which has also been shown in [35].

Table 3 shows the training and test accuracies with MFCCs and
spectral centroid features on EmoDB, RAVDESS and IITKGP-SEHSC
databases. Tables 4-6 demonstrate the veracity of our results in a
more quantified manner. Table 7 reports the performances of the
model on each emotion in the datasets.

Since the works with which we compare our results have
mostly not specified the split ratio which was used for the train-
ing and test sets, we have proceeded to present our results
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Table 4

Comparison of proposed method based on recognition performance on EmoDB corpus.
Reference Classifier used Features used Obtained accuracy Split ratio
Wang et al.[38] SVM (Gaussian kernel) Fourier parameters, 88.9% 90:10

MFCCs and derivatives

Kotti et al. [39] Linear SVM Pitch and 87.7% Not mentioned
cepstrum-based features

Wang et al.[40] SVM (Gaussian kernel) Wavelet packet coeff. 79.5% Not mentioned

Guo et al. [41] CNN Amplitude spectrogram 91.28% Not mentioned
and phase information

Proposed model Bagged ensemble of SVMs MFCCs, spectral 92.45% 90:10
centroids and MFCC
derivatives

AdaBoost model AdaBoost ensemble of SVMs MFCCs, spectral 87.32% 90:10
centroids and MFCC
derivatives

Table 5
Comparison of proposed method based on recognition performance on RAVDESS corpus.
Reference Classifier used Features used Obtained accuracy Split ratio
Zeng et al. [42] DNNs Spectrograms 64.52% Not mentioned
Shegokar and Sircar [43] SVMs Continuous wavelet 60.1% Not mentioned
transform, prosodic
coefficients
Proposed model Bagged ensemble of SVMs MFCCs, spectral 75.69% 90:10
centroids and MFCC
derivatives
AdaBoost model AdaBoost ensemble of SVMs MFCCs, spectral 72.10% 90:10
centroids and MFCC
derivatives
100
B 80
<
=
g 60
<
z 40
g In MFCCs+SC without feature selection
o 20 I MFCCs with feature selection
0 I8 MFCCs+SC with feature selection
EmoDB RAVDESS IITKGP

Fig. 1. Comparisons of recognition rates (where SC: spectral centroids).

with a 90:10 split ratio only. The only exception to this is the
works with which the performance on IITKGP-SEHSC dataset is
compared, which have mentioned a split ratio of 70:30. For that
case, we split our dataset (IITKGP-SEHSC in this case) identically,
and compare results. We have also produced results with 90:10
split ratio for the IITKGP-SEHSC dataset to see how much is the
difference in performance between 70:30 and 90:10. We found
not much difference in performance for these two split rations
(see Table 6). For all other datasets and comparisons, the split
ratio is 90:10 as noted above. Thus, we believe that despite the
exact split ratio for different related works are not known the
difference in performance between 90:10 and the split ratio these
experiments used is not significant and we may compare our
results for 90:10 with results reported in these papers. Note that
for the IITKGP-SEHSC dataset, our proposed methods outperform
on both 70:30 and 90:10 split rations, thus we believe the same
trends for other two datasets as well.

Wang et al. [38] explored Fourier parameter-based features
for their emotion recognition model. The idea behind capturing
and using Fourier parameter features was steeped in music theory
that stated that harmony structures of intervals were responsible
for the overall perception of the musical piece by the listeners.
They concluded that a combination of Fourier parameter features
with MFCCs produced the best results compared to either of
the feature sets when used individually. This concurs with our
observation that individual MFCC features do not demonstrate as
strong a performance as when combined with other feature sets.

Kotti et al. [39] presented a binary cascade classification
schema which focused on classifying between pairs of emotion
categories instead of all emotions at once, so easily-confused
emotions can be easily separable. They extracted numerous fea-
tures based on prosody, formants, energy, pitch, jitter and TEO-
autocorrelation, and also took the difference that would arise
in speech signal patterns owing to gender into consideration.
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experiments.

Table 6
Comparison of proposed method based on recognition performance on IITKGP-SEHSC corpus.
Reference Classifier used Features used Obtained accuracy Split ratio
Bhaykar et al.[45] GMMs MFCCs 73.68% Not mentioned
Proposed model Bagged ensemble of SVMs MFCCs, spectral 84.11% 70:30
centroids and MFCC
derivatives
AdaBoost model AdaBoost ensemble of SVMs MFCCs, spectral 77.19% 90:10
centroids and MFCC
derivatives
Our experiments do not take gender into consideration and  Table 7 ' _
uses a smaller number and limited kind of features, but still Perfo”_m“‘:e on the three datasets according to emotion.
demonstrate better performance than the results reported by Emotion EmoDB RAVDESS IITKGP-SEHSC
the authors in the former. Extra features and gender-based anal- Happiness 100% 78.81% 87.5%
ysis could possibly be an additional direction of research and Neutral 100% 74.32% 81.23%
hancement, and would likely be explored in further Anger 100 82.00% 92.76%
€ven an en ) y p Fear 66.67% 67.91% 84.4%
Sadness 77.77% 71.88% 83.32%
In another set of experiments, Wang et al. [40] studied wavelet Disgust 100% 75.02% 82.00%
packet transforms as features for emotion recognition. Wavelet golrf’dom 87.5% Sousy
packet transforms provide for better frequency resolution at low szrr;rise 80'28; 83.98%
frequencies, and even somewhat resemble auditory perception Sarcastic 85.51%

in humans. They reported an accuracy of 79.5%, which is a 6%
improvement over their results without wavelet packet analysis.
This result was obtained with the combination of wavelet packet
analysis and sequential forward feature selection, a wrapper-
based feature selection method such as the one used in our
experiments. A case could be made that wrapper-based feature
selection algorithms tend to help with the recognition rates in
SER.

In the case of the RAVDESS database, substantial work was dif-
ficult to be found, owing to its recent introduction into the field.
Owing to this, only a few works could be found and analyzed.
Zeng et al. [42] experimented with various deep neural networks
(including gated residual networks), and reported a best accuracy
of 64.52%. Shegokar and Sircar [43] used a SVM with a feature
set obtained from prosodic coefficients and continuous wavelet
transforms, and reported a best accuracy of 60.1%. In contrast, our
best performance is 75.69%.

In order to understand the effect of the classification method,
our emotion recognition system is also evaluated using a simple
support vector machine classifier which has achieved overall ac-
curacies of 86.69% and 72.91% for EmoDB and RAVDESS databases
respectively. With the use of a bagged ensemble comprising of
support vector machines for classification, this accuracy is further
enhanced by roughly 5%.

Finally, from the observations of the AdaBoost ensemble’s
performance compared with the others (in Tables 4-6), it can
be inferred that our bagged model gives a better performance
than the AdaBoost ensemble on all the three datasets. It could
be possible that AdaBoost is not a suitable learner for this class
of problems, although further experiments can help prove or
disprove this claim more rigorously.

6. Conclusion and future work

In this work, we proposed a bagged ensemble comprising of
support vector machines with a Gaussian kernel for SER. We
firstly extracted MFCCs along with spectral centroids to rep-
resent emotional speech followed by a wrapper-based feature
selection method to retrieve the best feature set. Experiments
on the EmoDB, RAVDESS and IITKGP-SEHSC databases show the
superiority of our proposed approach compared with the state-
of-the-art in terms of overall accuracy.

Many questions and potential avenues for further research
have emerged during and after our experiments. Some of them
are listed below.

e Currently, our work focuses on acoustic features only; could
linguistic features in combination with acoustic ones im-
prove performance and help gain new insights in SER? How
much can semantic features extracted from speech help
determine the emotions inherent in it?

e How much and in what way does gender influence the
patterns observed in speech signals, and how best can it be
studied for recognizing emotions?

e In recent times, deep learning methods have been intro-
duced for emotion recognition, which learn the features
from speech in the network itself instead of using hand-
crafted features. Would such features fare well in compari-
son with carefully studied and hand-crafted features?
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